Vector Fields on Spheres

نویسنده

  • ISABEL VOGT
چکیده

In this paper we will address the question of how many nonvanishing, linearly independent tangent vector fields can exist on a sphere Sn−1 ⊆ R. By this we mean the following, a tangent vector field on Sn−1 = {x ∈ R : ‖x‖ = 1} is a map v : Sn−1 → R such that v(x) ⊥ x for all x ∈ Sn−1. However, by assumption v is nonvanishing, so we can normalize such that ‖v(x)‖ = 1 and we obtain a map v : Sn−1 → Sn−1 : v(x) ⊥ x, ∀x ∈ Sn−1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instability of Hopf vector fields on Lorentzian Berger spheres

In this work, we study the stability of Hopf vector fields on Lorentzian Berger spheres as critical points of the energy, the volume and the generalized energy. In order to do so, we construct a family of vector fields using the simultaneous eigenfunctions of the Laplacian and of the vertical Laplacian of the sphere. The Hessians of the functionals are negative when they act on these particular...

متن کامل

Stress Analysis of Magneto Thermoelastic and Induction Magnetic Filed in FGM Hallow Sphere

In this paper a closed form solution for one-dimensional magnetothermoelastic problem in a functionally graded material (FGM) hollow sphere placed in a uniform magnetic field and temperature field subjected to an internal pressure is obtained using the theory of magnetothermoelasticity. Hyper-geometric functions are employed to solve the governing equation. The material properties through the g...

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

Extension Theorems for Spheres in the Finite Field Setting

In this paper we study the boundedness of extension operators associated with spheres in vector spaces over finite fields. In even dimensions, we estimate the number of incidences between spheres and points in the translated set from a subset of spheres. As a result, we improve the Tomas-Stein exponents, previous results by the authors in [6]. The analytic approach and the explicit formula for ...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013